Pi (\(\pi\))

For at regne en cirkel skal man kende til tallet Pi (\(\pi\)). 

Pi beskriver forholdet mellem cirklens diameter og omkreds. Pi er cirka lig med 3,14.

Omkredsen er altså 3,14 gange længere end diameteren. 

Det betyder at hvis du har et hjul, der er 1 meter i diameter og kører det en omgang rundt, så har det flyttet sig 3,14 meter.

CIRKA 3,14 meter!, for Pi er uendeligt. Det kan ikke beskrives som en brøk, det tætteste er nok \(\frac{355}{113}\)

I dag regner man Pi ud med computere, så vi kender Pi med millioner af decimaler.

Til hverdagsbrug er det godt nok at regne med 3,14, men hvis din lommeregner har en Pi-knap skal du bruge den, i stedet for 3,14.

Den er nemlig mere præcis.

Bonus info:

En cirkel har samme areal som en retvinklet trekant med cirklens radius, som den ene katete og cirklens omkreds, som den anden katete.

Beregning

Hvis du har en cirkel med en diameter på 10 cm, kan du regne resten ud sådan her:

 

$$ Radius = \frac{diameter}{2} \Leftrightarrow r=5 cm $$

 

$$ Areal = r^2\cdot \pi \Leftrightarrow  A= 78,5 cm^2 $$

 

$$ Omkreds=2 \cdot r \cdot \pi \Leftrightarrow  O= 31,4 cm $$

 

 

Regnemaskine
r
d
A
O
FormelsamlingCirkler
Diameter

\( d=2 \cdot r \)


Omkreds

\( O = 2 \cdot r \cdot \pi \)


Areal

\( A = r^2 \cdot \pi \)


Radius

\( r = \frac{d}{2} \)


\( r= \frac{O}{2 \cdot \pi} \)


\( r = \sqrt{\frac{A}{\pi}} \)